home *** CD-ROM | disk | FTP | other *** search
- /* Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
-
- You should have received a copy of the GNU Library General Public
- License along with the GNU C Library; see the file COPYING.LIB. If
- not, write to the, 1992 Free Software Foundation, Inc., 675 Mass Ave,
- Cambridge, MA 02139, USA. */
-
- /*
- * ANSI Standard: 4.5 MATHEMATICS <math.h>
- */
-
- #ifndef _MATH_H
- #define _MATH_H
-
- #include <features.h>
-
- __BEGIN_DECLS
-
- /* Trigonometric functions. */
-
- #if !defined(__mc68000__) || defined (__NO_MATH_INLINES)
- /* Arc cosine of X. */
- extern __CONSTVALUE double acos __P ((double __x));
- /* Arc sine of X. */
- extern __CONSTVALUE double asin __P ((double __x));
- /* Arc tangent of X. */
- extern __CONSTVALUE double atan __P ((double __x)) __CONSTVALUE2;
- #endif /* m68k inlines */
- /* Arc tangent of Y/X. */
- extern __CONSTVALUE double atan2 __P ((double __y, double __x)) __CONSTVALUE2;
-
- #if !defined(__mc68000__) || defined (__NO_MATH_INLINES)
- /* Cosine of X. */
- extern __CONSTVALUE double cos __P ((double __x)) __CONSTVALUE2;
- /* Sine of X. */
- extern __CONSTVALUE double sin __P ((double __x)) __CONSTVALUE2;
- /* Tangent of X. */
- extern __CONSTVALUE double tan __P ((double __x)) __CONSTVALUE2;
-
-
- /* Hyperbolic functions. */
-
- /* Hyperbolic cosine of X. */
- extern __CONSTVALUE double cosh __P ((double __x)) __CONSTVALUE2;
- /* Hyperbolic sine of X. */
- extern __CONSTVALUE double sinh __P ((double __x)) __CONSTVALUE2;
- /* Hyperbolic tangent of X. */
- extern __CONSTVALUE double tanh __P ((double __x)) __CONSTVALUE2;
- #endif /* m68k inlines */
-
- /* Hyperbolic arc cosine of X. */
- extern __CONSTVALUE double acosh __P ((double __x));
- /* Hyperbolic arc sine of X. */
- extern __CONSTVALUE double asinh __P ((double __x));
- #if !defined(__mc68000__) || defined (__NO_MATH_INLINES)
- /* Hyperbolic arc tangent of X. */
- extern __CONSTVALUE double atanh __P ((double __x));
- #endif /* m68k inlines */
-
- /* Exponential and logarithmic functions. */
-
- #if !defined(__mc68000__) || defined (__NO_MATH_INLINES)
- /* Exponentional function of X. */
- extern __CONSTVALUE double exp __P ((double __x)) __CONSTVALUE2;
-
- /* Break VALUE into a normalized fraction and an integral power of 2. */
- extern double frexp __P ((double __x, int *__exp));
-
- /* X times (two to the EXP power). */
- extern __CONSTVALUE double ldexp __P ((double __x, int __exp));
-
- /* Natural logarithm of X. */
- extern __CONSTVALUE double log __P ((double __x));
-
- /* Base-ten logarithm of X. */
- extern __CONSTVALUE double log10 __P ((double __x));
-
- /* Return exp(X) - 1. */
- extern __CONSTVALUE double expm1 __P ((double __x)) __CONSTVALUE2;
-
- /* Return log(1 + X). */
- extern __CONSTVALUE double log1p __P ((double __x));
-
- /* Break VALUE into integral and fractional parts. */
- extern double modf __P ((double __x, double *__iptr));
- #endif /* m68k inlines */
-
-
- /* Power functions. */
-
- #if !defined(__mc68000__) || defined (__NO_MATH_INLINES)
- /* Return X to the Y power. */
- extern __CONSTVALUE double pow __P ((double __x, double __y));
-
- /* Return the square root of X. */
- extern __CONSTVALUE double sqrt __P ((double __x));
- #endif /* m68k inlines */
-
- /* Return the cube root of X. */
- extern __CONSTVALUE double cbrt __P ((double __x)) __CONSTVALUE2;
-
-
- /* Nearest integer, absolute value, and remainder functions. */
-
- #if !defined(__mc68000__) || defined (__NO_MATH_INLINES)
- /* Smallest integral value not less than X. */
- extern __CONSTVALUE double ceil __P ((double __x)) __CONSTVALUE2;
-
- /* Absolute value of X. */
- extern __CONSTVALUE double fabs __P ((double __x)) __CONSTVALUE2;
-
- /* Largest integer not greater than X. */
- extern __CONSTVALUE double floor __P ((double __x)) __CONSTVALUE2;
-
- /* Floating-point modulo remainder of X/Y. */
- extern __CONSTVALUE double fmod __P ((double __x, double __y)) __CONSTVALUE2;
-
-
- /* Return 0 if VALUE is finite or NaN, +1 if it
- is +Infinity, -1 if it is -Infinity. */
- extern __CONSTVALUE int __isinf __P ((double __value)) __CONSTVALUE2;
-
- /* Return nonzero if VALUE is not a number. */
- extern __CONSTVALUE int __isnan __P ((double __value)) __CONSTVALUE2;
- #endif /* m68k inlines */
-
- /* Return nonzero if VALUE is finite and not NaN. */
- extern __CONSTVALUE int __finite __P ((double __value)) __CONSTVALUE2;
- #ifdef __OPTIMIZE__
- #define __finite(value) (!__isinf (value) && !__isnan (value))
- #endif
-
- /* Deal with an infinite or NaN result.
- If ERROR is ERANGE, result is +Inf;
- if ERROR is - ERANGE, result is -Inf;
- otherwise result is NaN.
- This will set `errno' to either ERANGE or EDOM,
- and may return an infinity or NaN, or may do something else. */
- extern double __infnan __P ((int __error));
- extern long double __infnanl __P((int __error));
-
- /* Return X with its signed changed to Y's. */
- extern __CONSTVALUE double __copysign __P ((double __x,
- double __y)) __CONSTVALUE2;
-
- extern __CONSTVALUE __long_double_t __copysignl __P ((__long_double_t __x,
- __long_double_t __y ))
- __CONSTVALUE2;
-
-
- #if !defined(__mc68000__) || defined (__NO_MATH_INLINES)
- /* Return the integer nearest X in the direction of the
- prevailing rounding mode. */
- extern __CONSTVALUE double __rint __P ((double __x)) __CONSTVALUE2;
- extern __CONSTVALUE double rint __P ((double __x)) __CONSTVALUE2;
- #endif /* m68k inlines */
-
- /* Return `sqrt(X*X + Y*Y)'. */
- extern __CONSTVALUE double hypot __P ((double __x, double __y)) __CONSTVALUE2;
-
- #ifdef __USE_MISC
-
- extern __CONSTVALUE int isinf __P ((double __value)) __CONSTVALUE2;
- extern __CONSTVALUE int isinfl __P ((__long_double_t __value)) __CONSTVALUE2;
- extern __CONSTVALUE int isnan __P ((double __value)) __CONSTVALUE2;
- extern __CONSTVALUE int isnanl __P ((__long_double_t __value)) __CONSTVALUE2;
- extern __CONSTVALUE int finite __P ((double __value)) __CONSTVALUE2;
- extern __CONSTVALUE double infnan __P ((int __error)) __CONSTVALUE2;
- extern __CONSTVALUE __long_double_t infnanl __P ((int __error)) __CONSTVALUE2;
- extern __CONSTVALUE double copysign __P ((double __x,
- double __y)) __CONSTVALUE2;
- extern __CONSTVALUE __long_double_t copysignl __P ((__long_double_t __x,
- __long_double_t __y))
- __CONSTVALUE2;
- extern __CONSTVALUE double drem __P ((double __x, double __y)) __CONSTVALUE2;
-
- /*
- #define FP_NAN 1
- #define FP_INFINITE 2
- #define FP_NORMAL 3
- #define FP_SUBNORMAL 4
- #define FP_ZERO 5
-
- extern __CONSTVALUE int fpclassifyf( float _x) __CONSTVALUE2;
- extern __CONSTVALUE int fpclassifyd( double _x) __CONSTVALUE2;
- extern __CONSTVALUE int fpclassifyl( __long_double_t _x) __CONSTVALUE2;
- */
-
- #ifdef __OPTIMIZE__
- #define isinf(value) __isinf(value)
- #define isinfl(value) __isinfl(value)
- #define isnan(value) __isnan(value)
- #define isnanl(value) __isnanl(value)
- #define infnan(error) __infnan(error)
- #define infnanl(error) __infnanl(error)
- #define finite(value) __finite(value)
- #define copysign(x, y) __copysign((x), (y))
- #define copysignl(x, y) __copysignl((x), (y))
- #endif /* Optimizing. */
-
- #endif /* Use misc. */
-
-
- /* some other functions not in GNU libc */
-
- /* Return 2 to the X power. */
- extern __CONSTVALUE double pow2 __P ((double __x)) __CONSTVALUE2;
-
- /* Return 10 to the X power. */
- extern __CONSTVALUE double pow10 __P ((double __x)) __CONSTVALUE2;
-
- /* Return the error function of X. */
- extern __CONSTVALUE double erf __P ((double __x)) __CONSTVALUE2;
-
- /* Return the complementary error function of X. */
- extern __CONSTVALUE double erfc __P ((double __x)) __CONSTVALUE2;
-
- /* Return the Bessel function of X of the first kind of order 0. */
- extern __CONSTVALUE double j0 __P ((double __x)) __CONSTVALUE2;
-
- /* Return the Bessel function of X of the first kind of order 1. */
- extern __CONSTVALUE double j1 __P ((double __x)) __CONSTVALUE2;
-
- /* Return the Bessel function of X of the first kind of order N. */
- extern __CONSTVALUE double jn __P ((int __n, double __x)) __CONSTVALUE2;
-
- /* Return the log of the absolute value of the Gamma function of X. */
- extern __CONSTVALUE double lgamma __P ((double __x));
-
- /* Return the Bessel function of X of the second kind of order 0. */
- extern __CONSTVALUE double y0 __P ((double __x)) __CONSTVALUE2;
-
- /* Return the Bessel function of X of the second kind of order 1. */
- extern __CONSTVALUE double y1 __P ((double __x)) __CONSTVALUE2;
-
- /* Return the Bessel function of X of the second kind of order N. */
- extern __CONSTVALUE double yn __P ((int __n, double __x)) __CONSTVALUE2;
-
- #if !defined (__mc68000__) || defined (__NO_MATH_INLINES)
- extern __CONSTVALUE __long_double_t acosl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t asinl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t atanl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t cosl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t sinl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t tanl __P ((__long_double_t __x));
- #endif /* m68k inlines */
- extern __CONSTVALUE __long_double_t acoshl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t asinhl __P ((__long_double_t __x));
- #if !defined (__mc68000__) || defined (__NO_MATH_INLINES)
- extern __CONSTVALUE __long_double_t atanhl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t coshl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t sinhl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t tanhl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t expl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t expm1l __P ((__long_double_t __x)) __CONSTVALUE2;
- extern __long_double_t frexpl __P ((__long_double_t __value, int *__exp));
- extern __CONSTVALUE __long_double_t ldexpl __P ((__long_double_t __x, int __exp));
- extern __CONSTVALUE __long_double_t logl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t log10l __P ((__long_double_t __x));
- extern __long_double_t modfl __P ((__long_double_t __value, __long_double_t * __ip));
- extern __CONSTVALUE __long_double_t powl __P ((__long_double_t __x, __long_double_t __y));
- extern __CONSTVALUE __long_double_t sqrtl __P ((__long_double_t __x));
- #endif /* m68k inlines */
- extern __CONSTVALUE __long_double_t atan2l __P ((__long_double_t __y, __long_double_t __x));
- extern __CONSTVALUE __long_double_t hypotl __P ((__long_double_t __x, __long_double_t __y)) __CONSTVALUE2;
-
- extern __CONSTVALUE __long_double_t erfl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t erfcl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t lgammal __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t j0l __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t y0l __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t j1l __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t y1l __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t jnl __P ((int __n, __long_double_t __x));
- extern __CONSTVALUE __long_double_t ynl __P ((int __n, __long_double_t __x));
- extern __CONSTVALUE __long_double_t cbrtl __P ((__long_double_t __x));
- #if !defined (__mc68000__) || defined (__NO_MATH_INLINES)
- extern __CONSTVALUE __long_double_t log1pl __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t log2l __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t pow2l __P ((__long_double_t __x));
- extern __CONSTVALUE __long_double_t pow10l __P ((__long_double_t __x));
-
- /* Smallest integral value not less than X. */
- extern __CONSTVALUE __long_double_t ceill __P ((__long_double_t __x)) __CONSTVALUE2;
-
- /* Absolute value of X. */
- extern __CONSTVALUE __long_double_t fabsl __P ((__long_double_t __x)) __CONSTVALUE2;
-
- /* Largest integer not greater than X. */
- extern __CONSTVALUE __long_double_t floorl __P ((__long_double_t __x)) __CONSTVALUE2;
-
- /* Floating-point modulo remainder of X/Y. */
- extern __CONSTVALUE __long_double_t fmodl __P ((__long_double_t __x,
- __long_double_t __y)) __CONSTVALUE2;
-
-
- /* Return 0 if VALUE is finite or NaN, +1 if it
- is +Infinity, -1 if it is -Infinity. */
- extern __CONSTVALUE int __isinfl __P ((__long_double_t __value)) __CONSTVALUE2;
-
- /* Return nonzero if VALUE is not a number. */
- extern __CONSTVALUE int __isnanl __P ((__long_double_t __value)) __CONSTVALUE2;
- #endif /* m68k inlines */
-
- __END_DECLS
-
- extern int signgam;
- extern int signgaml;
-
- /* Get machine-dependent HUGE_VAL value (returned on overflow). */
- #include <huge_val.h>
-
- /* Get machine-dependent NAN value (returned for some domain errors). */
- #ifdef __USE_GNU
- #include <nan.h>
- #endif
-
- #include <float.h>
- #include <values.h>
-
- #ifndef HUGE
- #define HUGE DBL_MAX
- #endif
-
- #ifndef HUGE_VAL
- #define HUGE_VAL DBL_MAX
- #endif
-
- #ifndef M_E
- #define M_E 2.7182818284590452354 /* e */
- #endif
- #ifndef M_LOG2E
- #define M_LOG2E 1.4426950408889634074 /* log 2e */
- #endif
- #ifndef M_LOG10E
- #define M_LOG10E 0.43429448190325182765 /* log 10e */
- #endif
- #ifndef M_LN2
- #define M_LN2 0.69314718055994530942 /* log e2 */
- #endif
- #ifndef M_LN10
- #define M_LN10 2.30258509299404568402 /* log e10 */
- #endif
- #ifndef M_PI
- #define M_PI 3.14159265358979323846 /* pi */
- #endif
- #ifndef M_PI_2
- #define M_PI_2 1.57079632679489661923 /* pi/2 */
- #endif
- #ifndef M_1_PI
- #define M_1_PI 0.31830988618379067154 /* 1/pi */
- #endif
- #ifndef M_PI_4
- #define M_PI_4 0.78539816339744830962 /* pi/4 */
- #endif
- #ifndef M_2_PI
- #define M_2_PI 0.63661977236758134308 /* 2/pi */
- #endif
- #ifndef M_2_SQRTPI
- #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
- #endif
- #ifndef M_SQRT2
- #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
- #endif
- #ifndef M_SQRT1_2
- #define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
- #endif
-
- #ifndef PI /* as in stroustrup */
- #define PI M_PI
- #endif
- #ifndef PI2
- #define PI2 (M_PI + M_PI)
- #endif
-
- #if defined(__mc68000__)
- # include <m68k/__math.h>
- #endif
-
-
- #ifndef __NO_MATH_INLINES
- # include <ieee754.h>
- # include <ieee854.h>
-
- extern __inline __CONSTVALUE double __copysign __P ((double __x,
- double __y))
- {
- union ieee754_double *__ux = (union ieee754_double *) &__x;
- union ieee754_double *__uy = (union ieee754_double *) &__y;
-
- __ux->ieee.negative = __uy->ieee.negative;
-
- return __x;
- }
-
- extern __inline __CONSTVALUE __long_double_t __copysignl __P ((__long_double_t __x, __long_double_t __y ))
- {
- union ieee854_double *__ux = (union ieee854_double *) &__x;
- union ieee854_double *__uy = (union ieee854_double *) &__y;
-
- __ux->ieee.negative = __uy->ieee.negative;
-
- return __x;
- }
-
- #endif /* __NO_MATH_INLINES */
- #endif /* _MATH_H */
-